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ABSTRACT 

For more than  a decade now, the chiral Por ts  model in statistical mechan- 

ics has at t racted much attention. A number  of mathematical  physicists 

have wri t ten quite extensively about  it. The solutions give rise to a curve 

over C, and much effort has gone into studying the curve and its Jacobian. 

In this article, we give yet another  approach to this celebrated problem. 

We restrict a t tent ion to the three-state case, which is simplest. For the 

first t ime in its history, we study the model with the tools of modern 

algebraic geometry. Aside from simplifying and explaining the previous 

results on the periods and The ta  function of this curve, we obtain a far 

more complete description of the Jacobian. 
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1. Introduction 

Suppose we take a ferromagnet and put it in a magnetic field. Then the ferro- 

magnet will magnetise. Let H be the external magnetic field, T the temperature, 

and M(H, T) the magnetisation of the ferromagnet. The graph of M(H, T) as a 

function of H,  with T held constant, looks approximately like this: 

M 

1 

M0(T) 
f 

-Mo(T) 

The key point is that, as H > 0, the magnetisation M(H, T) tends to some 

non-zero number, denoted Mo(T). It is the spontaneous magnetisation of the 

ferromagnet, at temperature T. 

Next, one can wonder how Mo(T) varies, as a function of T. One knows 

experimentally that its graph looks approximately like 

Mo(T) 

T~ T 



Vol. 125, 2001 THE THREE-STATE CHIRAL POTTS MODEL 255 

The spontaneous magnetisation drops off, until at some temperature Tc the 

material stops being a ferromagnet. 

A mathematical model that simply explains this phenomenon is the Ising 

model. The Ising model is that  the particles lie on a lattice, and each is 

capable of two states. Adjacent particles contribute to the energy of the sys- 

tem, and the contribution depends only on whether they are in the same state, 

or in different states. The model was formulated and solved, in one dimension, 

by Ising in 1925. The 2-dimensional solution was due to Onsager and Yang, in 

the 1940's. The 3-dimensional problem is still unsolved. 

Solving the 2-dimensional Ising model amounts to finding the eigenvalues of 

some large square matrix. The solution of Onsager and Yang, later elaborated 

and extended by Baxter and many others, goes as follows. Instead of one 

matrix, one introduces a large family of commuting matrices. The matrices 

are parametrised by points on some elliptic curve. The thermodynamics of the 

system is now parametrised by the elliptic curve, and we can use Theta  functions 

to explicitly exhibit how the various thermodynamic observables depend on the 

point in the curve. Clever manipulation with Theta  functions now solves the 

problem. 

The chiral Ports model is the generalisation of the Ising model, where more 

states are allowed. Instead of each particle being in one of only two possible 

states, we now allow N states. The problem has been to generalise the existing 

methods to this new model. And the difficulty is that,  instead of an elliptic curve, 

one discovers oneself faced with a curve of higher genus. 

The curve is very explicit. It comes from a solution to the the star-triangle 

relations; see [9]. Specifically, let N be the number of states, k the temperature 

(suitably normalised). Let k t = ~ / 1 -  k 2. The Boltzmann weights depend on 

four complex numbers a, b, c, d which must satisfy [:: o 
1 - k  O k b N 

(1) - k  1 - k '  cN ---- O. 
0 --M d N 

Of course, this is of physical significance only when k is real, and in fact the 

interesting range is 0 < k < 1. But there is nothing to stop us from studying 

this family of curves for all pairs of complex numbers (k, k ~) with 

k 2 + k  ' ~ = 1 ,  k ¢ 0 ¢ k ' .  

Due to this last condition the matrix has rank two, so the equations determine 

two independent hypersurfaces in pa. 
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Introducing the standard (see Baxter 's [4]) variables x = a/d, y = b/c, # = d/c, 

we have that  x and y satisfy the equation 

(2) x N + yN = k(1 + xgyN) ,  

giving an algebraic curve in A 2. And # satisfies 

#N = k' /(1 - kx  N) = (1 - kyN) / k  '. 

The curve (1) is an N-sheeted unramified cover of the curve (2). The genus of 

the curve (2) is (N - 1) 2, while the genus of the curve (1) is N 2 ( N  - 2) + 1. 

See [12]. In this article, we will restrict ourselves to the very simplest curve. We 

will look only at the curve (2), and only in the case N = 3. 

Already here, the physical problem is completely unsolved. And following the 

classical methods, which originated with Onsager and Yang, one would like to 

parametrise the physics in terms of Theta  functions. It is reasonable to study 

the Jacobian and the Theta  divisor of the curve. 

The physicists have worked hard on this problem. We refer the reader partic- 

ularly to the articles by Matveev and Smirnov [12], by Baxter [3], [4], and [5], 

and by Davies [10]. In fact these papers are admirable pieces of classical math- 

ematics. The authors want to understand the Jacobian of a curve, and do so 

very explicitly. They first choose a basis for the homology of the curve, compute 

the period integrals, and work out identities of Theta  functions. Of course, the 

aim remains to use the algebraic geometry of the curve to obtain results about 

the physics of the model. But given the effort, industry and ingenuity that  the 

physicists have put into studying these curves, a new treatment of the curves 

should be of interest, in its own right. 

The model remains unsolved, despite all the efforts so far. The frustrations are 

summarized by recent comments of McCoy (one of the discoverers of the chiral 

Potts  model). In his 1999 Heinemann prize address, McCoy said 

This is a classic problem in algebraic geometry for which in fact 

no explicit answer is known either. Indeed, the unsolved problems 

arising from the chiral Potts model are so resistant to all known 

mathematics that  I have reduced my frustration to the following 

epigram: 

"The nineteenth century saw many brilliant creations of the human 

mind. Among them are algebraic geometry and Marxism. In the 

late twentieth century Marxism has been shown to be incapable of 
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solving any practical problem but we still do not know about algebraic 

geometry."  

Now as McCoy says, algebraic geometry is one of the brilliant achievements of 

the late 19 th century, and in the present century it saw some major developments. 

The aim of the current article is to apply these to the problem at hand. [We made 

no at tempt  to harness the theory of Marxism, to work for us in this endeavour.] 

The reader is strongly encouraged to compare our paper to the earlier ones, 

particularly Matveev and Smirnov [12] and Davies [10]. Not only is our approach 

more elegant, but the results are far sharper. This article is probably the first one 

in the history of this problem which methodically applies the modern machinery 

of algebraic geometry. The aim of this article is to treat the problem with the 

modern tools of algebraic geometry, and to write the article in such a way that  

any physicist can read it. The result is quite long, and therefore we decided not 

to make it yet longer by suggesting physical applications. That  will come in a 

later paper. This present one is concerned only with the study of the curve, its 

Jacobian, and the Theta  divisor. 

If we had written this article as private notes to ourselves, it would be much 

shorter. We tried to make it readable to both physicists and algebraic geometers. 

After all, if physicists cannot read it then there is no point to it at all. And 

at the very least, we must expect the referee to be an algebraic geometer; some 

expert will presumably check that the mathematics is correct. For this reason 

we included the very long introduction, which points out the physical relevance 

of the question, and refers the expert to some (not all) of the earlier literature 

on the geometry of this curve. 

In the remainder of this article, we specialize to a study of the curve X 

determined by 
x 3 + y3 = k(1 + x3y3), 

where k ~ {0, :i:1}. It has genus four, and it is easy to show ([10] or [12]) that  

the space of holomorphic differentials is spanned by 

x dx y d x  
X -  Y - 

y2 _ ky2x3 '  y2 _ ky2x3 '  

Z - x y d x  W =  dx 
y~ _ ky2x3 '  y2 _ ky2x3" 

Davies noticed that  these differentials satisfy the homogeneous identities 

x Y  =zw, 
X 3 + y3  : k ( Z  3 + W3). 
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They give a mapping of X into p3 (the canonical map). Davies showed that this 

amounts to an embedding of X in a smooth compactification in ~3. In Section 2, 

we reprove Davies' results, but more in the way an algebraic geometer would 

approach the problem. We start with the compact curve in p3 and show that  its 

embedding is canonical. Mathematical physicists are advised to skip Section 2. 

The above is a summary of the results, and the proofs we give in Section 2 are 

written for algebraic geometers. 

The remainder of this Introduction is an overview of what follows. In Section 3 

we study the automorphism group of X. Much has been written about the 

automorphisms of the chiral Potts  curves; in the present case the vital (previously 

un-noticed) point is that the group is the product of two copies of the permutation 

group $3. That  is, Aut(X) = $3 x $3. The remainder of Section 3 is devoted to 

constructing maps from X to elliptic curves, and hence from the Jacobian J(X) 
to elliptic curves. We construct these maps and use them to compute the action 

of $3 x $3 on the holomorphic 1-forms on X. 

In Section 4 we show that the Jacobian J(X) is isogenous to the product of 

four elliptic curves, which occur as pairs. There are two pairs, and iuterchanging 

them corresponds to switching k and 1/k. That  is, let E(k) be the complex torus 

C~ (1, T(k)), whose period ~-(k) is a function of k. Then there is a homomorphism 

7r 

J(X)--~+E(k) x E(k) x E(k -1) x E(k-1), 

with finite kernel. An elementary way to view this is that  the lattice which 

generates the complex torus 3(X) may be constructed as a finite number of 

translates of the product of the lattices which generate E(k) and E(k-1). 
The structure of this isogeny is obviously of great interest and is investigated 

in Sections 4-7. Already in Section 4, we show that all points in the kernel of 

1r are of order 3. That  is, Ker(lr) is contained in the group J (X)3  C J (X) ,  

where J(X)a is the kernel of multiplication by 3. Since I J ( X ) 3 1  = 32g --= 3 s, this 

immediately gives 
} Ker(~)} _< 3 s. 

We also prove that the action of $3 x $3 takes the kernel of ~ to itself. See 

Proposition 4.2 and Corollary 4.3. 
It follows that there is an action of $3 x $3 on E(k) 2 x E(k-I) 2, making the 

map 
2 × E(}-I) 

a morphism of $3 x S3-spaces. In Section 5, we compute quite explicitly the 

action, as a representation into SL(2, Z) x SL(2, Z). 
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In Section 6 we consider the effect of 7r on points of order 3 in J ( X ) .  We find 

a subgroup of 34 points in the group J (X)3  / Ker(Tr), which establishes that  

I Ker(~r)l ~ 34. 

The question of the degree is finally settled in Section 7, where we show that  

deg(Tr) -- I Ker(~r)l -- 9. 

We show this by proving that  the pushforward of the Theta  divisor is a rational 

multiple of a divisor of degree 9. In symbols: ~r,O = r A ,  where deg(A) = 9. 

Computing degrees, we have 

I Ker(Tr)l. deg(O) = r4deg(A). 

But O is a principal polarization; deg(O) -- 1, and we know that  deg(A) = 9. 

This allows us to compute 

I ger(Ir)l = 9r 4, 

for some rational number r. Since the left hand side is an integer dividing 34, we 

must have r 4 ~ 1. 

For any elliptic curve E,  the divisor D ( E )  C E × E is defined to be the sum 

of the three divisors (x = 0), (y -- 0) and (x + y -- 0). The divisor A = lr, O can 

be explicitly computed. I t  may be written in the form 

The expression for 7r, ~ given above therefore exhibits it as a sum of six abelian 

subvarieties. In Section 8, we show that  the six may be reduced to four; this 

means that  the Theta  function of X may be expanded as a sum of products of 

four elliptic The ta  functions. Matveev and Smirnov discovered such an identity; 

see [12]. In Section 9, we show that  the formula of Matveev and Smirnov is one 

of an infinite family. 

2. T h e  bas i c s  

Let k E C be a complex number, k ¢ {0, ±1}. Consider the curve X c CP 3 given 

by the equations 

(3) x y  : zw ,  x 3 + y3 = k ( z  3 + W3). 

Since the field will always be the complex numbers, we will omit it in the notation. 

p3 will stand for C~ 3. For most of the article, the number k ~ {0, ±1} is fixed. 
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The curve X lies on the quadric surface xy  = zw, and it is well-known that  this 

surface is isomorphic to 1 )1 × p1. We have a curve X C p1 × 1)1 C p3, cut out by 

the equation x 3 +y3  = k(z  3 +w3).  Let F1 and F2 be fibers of the two projections 

F1 × 1)1 ~ 1)1. The embedding of 1)1 × p1 into p3 is by the complete linear 

system of the very ample divisor F1 + F2. The curve X C 1)1 x 1)1 is given by a 

cubic polynomial in the variables {x, y, z, w}; this makes it linearly equivalent to 

the divisor 3F1 + 3F2. 

Next, let us check that  X is a smooth curve. This is best checked in affine 

coordinates. For a point in ~3, one of the variables {x, y, z, w} must be non- 

zero; by symmetry,  the four cases are the same. Assume therefore that  w # 0. 

Dividing by w, we may assume w = 1, and the curve becomes 

that  is, 

xy  =z,  

x 3 -4- y3 =k (z  3 + 1), 

x 3 + y3 = k(1 + x3y3). 

A point on the curve is singular if it satisfies the polynomial equation above, as 

well as its partial  derivatives with respect to x and y. Tha t  is, the singular points 

of this affine part  of X are the solutions of the equations 

x 3 + y3 =k(1 + x3y3), 

y2 =kx3y2, 

x 2 =kx2y  3. 

Suppose x = 0. Then the equation y2 = kx3y2 tells us y = 0, and the equation 

x 3 + y3 = k(1 + x3y 3) gives that  k = 0, which is false. Hence x # 0, and by 

symmetry  y # 0; it follows that  x 3 = y3 = k - 1 .  Substituting in the equation 
x 3 + y3 = k(1 + x3y3), we obtain 

2k -1 = k(1 + k-2),  

which becomes k 2 - 1 = 0. Since k # ±1, this is false; hence there is no solution 

to the three equations, and X is smooth. 

Thus we have a smooth curve X C p1 × p1, linearly equivalent to 3F1 + 3F2. 

The canonical divisor on p1 × 1)1 is K~lxp1 = -2F1  - 2F2. The canonical divisor 

of X C 1)1 × 1)1 is the restriction to X of the divisor X + K~lxp1 , and this is 

linearly equivalent to 

(3F1 + 3F2) + ( -2F~ - 2F2) = F1 + F2. 
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In other words, the canonical divisor Kx of X is the divisor of its embedding in 

p3. The coordinates {x, y, z, w} may be thought of as holomorphic 1-forms on 

X.  The exact sequence of sheaves on p1 × p1 

x3+y3_k(z 3+wz) 
0 > Oe ,x~ l ( -2F1  - 2F2) 

gives an exact cohomology sequence 

and since 

the map 

Oel×e,(F1 + F2) 

Ox(F1 + F2) 

0 

H ° ( P  1 x p 1 , - 2 F 1  - 2F2) 

H°(P t x P~, F~ + F2) • H°(X, F1 + F2) 

H I ( P  I x p 1 , - 2 F I  - 2F2) 

H ° ( P  1 x p 1 , - 2 F 1  - 2F2) = 0 = H I ( p  1 × F 1, -2F1  - 2F2), 

H° (P  i x p i , F i  + F2) )H°(X, Fi+F2) 

must be an isomorphism. The sections {x, y, z, w} form a basis for the vector 

space of holomorphic 1-forms on X. The embedding of X into p3 is the canonical 

embedding, by the complete linear system of holomorphic 1-forms. The genus of 

the curve X,  which is the dimension of H°(X, Kx), must be 4. 

3. T h e  a u t o m o r p h i s m  g r o u p  o f  X 

Let ~ be a primitive cube root of 1; that  is, ~3 = 1, but ~ ¢ 1. Consider the 

automorphisms a, r ,  ~ and ~, given by the following formulas: 

~(x, ~, z, w) =(y, x, z, w), 
~(x, y, z, ~) =(~x, ¢~y, z, ~), 

~(~, y, z, ~) =(~, y, ~, z), 

~(x, y, z, w) =(x, y, ~z, ~2~). 
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It is very easy to compute that a and T commute with ~ and ~. One can also 

easily verify that 
0 .2 ~ 1, ~ 2  ~___ 1, 

T 3 ~ 1, ~3 ~ 1, 

O'TO" = T 2, O'TO" ~ ~2 .  

In other words, the automorphisms a and ~- generate a group isomorphic to $3, 

as do the automorphisms ~ and ~, and these two S3's commute. There is a 

homomorphism from the group $3 x $3 to the group of automorphisms of X. It 

may be checked that the automorphism group is equal to $3 x $3 provided that 

k ~ # - 1 ;  but this plays no role in our discussion here. 

Of course, the curve X is a ramified double cover of the curve X / a .  Our first 

observation is 

LEMMA 3.1: Let  a be the involution above, on the curve X .  The  curve X / a  

is an elliptic curve, and the map  ¢ : X > X / a  is ramified at six points. The  

1-form x - y vanishes precisely at the ramification points  o f  ¢. [Recall that  

the embedding  X C ~3 is canonical, so that  (x ,  y, z, w )  can be thought o f  as 

holomorphic 1-forms on X .]  

Proo~ The ramification points of the map X ----+ X/c~ are precisely the fixed 

points of the involution a. We have to find all the points P = (x, y, z, w) for 

which a P  = P .  This means that the points P = (x, y, z, w) and a P  = (y, x, z, w) 

agree in p3; there must exist a non-zero number A E C so that 

( x , y , z , w )  = A ( y , x , z , w ) .  

This gives four equations 
x --Ay, 

y =Ax, 

z =AZ,  

W : )~W.  

The last two equations can be written 

( A -  1)z = 0 = ( A -  1)w. 

Either A = 1, or z = w = 0. If z = w = 0, the equation xy  -- zw  tells us that 

either x or y must also vanish. The two cases being symmetric, assume y = 0. 

But then the equation 
x a + y3 = k ( z  3 + w 3) 
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reduces to X 3 = 0 ,  giving x = y = z --- w = 0. There  is no non- t r iv ia l  solut ion 

wi th  A ~ 1. 

Therefore  A = 1, and  the  equat ions  reduce to  x = y. Thus  we a l r eady  conclude 

t ha t  the  1-form x - y vanishes precisely at  the  fixed po in ts  of the  involut ion a .  

The  equa t ion  xy = zw now gives x 2 = zw, and the equa t ion  

x 3 +ya = k(z 3 + w  3) 

becomes  

2 x  a = k ( z  a + wa). 

Mul t ip ly ing  b o t h  sides by z a, we ob ta in  

2x3z 3 : k ( z  6 + w3z 3) 

=k(z 6 + z6). 

In  o ther  words, the  ra t io  z / x  satisfies a po lynomia l  of degree 6, wi th  no r epea ted  

roots .  The  key poin t  is t ha t  since k ¢ +1,  the  quadra t i c  above in z3/x  3 is not  

a perfect  square.  There  are six d is t inc t  values for z / x  and,  given x and  z, the  

equat ions  y = x and w = x y / z  de te rmine  y and w. There  are six fixed po in ts  to  

the  involut ion a .  

Therefore  the  m a p  X ~ X / a  is ramif ied  at  six points .  The  R i e m a n n - H u r w i t z  

formula  re la tes  the  genus of X ,  deno ted  g(X) ,  with  the  genus of X / a ,  denoted  

g (X /a ) .  The  general  formula  says 

29(X)  - 2 = n[29(X/a)  - 2] + r, 

where n is the  degree of the  cover and r is the  number  of ramif ica t ion  points .  In  

our  case, n = 2. A n d  we have jus t  c o m p u t e d  t ha t  r -- 6. We also know tha t  

g(X)  = 4, and  the  formula  allows us to compute  g(X/a) ;  we have 

6 = 2[2g(X/a) - 2] + 6, 

giving g ( X / a )  = 1. 

Thus  X / a  is an el l ipt ic  curve, and  the m a p  X ) X / a  is ramif ied  a t  six 

points ,  and  those  six poin ts  are precisely where the  1-form x - y vanishes.  This  

comple tes  the  p roof  of L e m m a  3.1. | 

R e m a r k  3.2: The  involut ions  aT and  0"7 -2 a r e  conjuga te  to  a in $3 x $3. We 

i m m e d i a t e l y  conclude t h a t  the  curves X / a T  and X/O'T 2 a r e  also el l ipt ic,  and  t ha t  

the  maps  X --+ X/a•- and  X ---4 X/a"r 2 are each ramif ied at  six points .  The  
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automorphisms a, aT and ~-~2 are not conjugate in $3 × Sa to the above, but are 

still very similar. The right way to say it, is that  the equations for the curve X 

can be written 
xy =zw, 

k - l (xa  + y3) =z a + w 3, 

and that the maps a and T for the curve X become the maps y and ~ for the 

curve with k replaced by k -1. Hence, applying Lemma 3.1 to the curve with k 

replaced by k -1, we can conclude that the curves X / Y ,  X/Y'~ and X/-#-~ 2 are all 

elliptic, and the covers X -----+ X/'#, X > X/~-f  and X ) X/Y-f  2 each have 

six ramification points. 

LEMMA 3.3: Since X / a  is an elliptic curve, it has, up to scalar multiples, only 

one non-zero holomorphic 1-form. Call this 1-form O. The differential of the map 

¢: X > X / a  takes 0 to the 1-form x - y [again, up to scalar multiples]. 

Proof: The non-zero holomorphic 1-form 0 on X / a  is nowhere vanishing. Its 

pullback to X is a 1-form, which vanishes precisely at the six points of ramification 

of the map ¢: X > X / a .  These six ramification points are the fixed points of 

the involution a. Now x - y is a 1-form on X (since the embedding in p3 is 

canonical), and it vanishes exactly at the fixed points of a; see Lemma 3.1. The 

1-forms ¢*0 and x - y have the same sets of zeros. Therefore, up to a scalar 

multiple, they must agree. | 

Remark 3.4: There are similar statements, which we can now deduce for aT, 

aT ~, a, aT and ~-~2. Up to scalar multiples, we have 

3.4.1. The holomorphic 1-form on X / a T  pulls back to ~2x - ~y. 

3.4.2. The holomorphic 1-form on X/a7 -2 pulls back to (x  - (2y. 

3.4.3. The holomorphic 1-form on X / Y  pulls back to w - z. 

3.4.4. The holomorphic 1-form on X/-#-~ pulls back to (2w - (z. 

3.4.5. The holomorphic 1-form on X / Y ~  2 pulls back to Cw - (2z. 

THEOREM 3.5: The action of the group $3 x S3, on the space of holomorphic 

1-forms on X ,  is given by the formulas 

y, z, z, w), 

y, z, = ( - x ,  -y ,  - z ) ,  
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Proo~ The action of $3 × $3 on X was defined by the formulas 

a(x,y,z,w) =(y,x,z,~), 

T(~, y, z, ~)  =(¢~, ¢2y, z, ~),  

~(x, y, z, ~)  =(x, y, w, z), 

~(~, y, z, ~) =(x, y, ~z, ~2~). 

Of course, since the action is on a projective variety, multiplying by a scalar A 

has no effect. The points (x, y, z, w) and A(x, y, z, w) agree. So we could, for any 

A E C*, put 

But in fact, {x, y, z, w} are 1-forms on X,  and hence so are the pullbacks by a, 

denoted { a ' x ,  a'y, a'z, a'w}. There is some choice of A, for which the formula 

reflects an identity of 1-forms. 

To compute the right choice of A, it is helpful to note that  under the map 

X ) X/a ,  the 1-form ~ on X / a  pulls back to x - y on X.  I t  follows that  the 

1-form x - y is invariant under the pullback by a. But we have 

a * ( x - y ) = ~ ( y - ~ ) .  

This forces A = - 1 ,  and we deduce that,  on the level of 1-forms, 

a*(x, y, z , ~ ) =  ( - y , - x , - z , - ~ ) .  

Similarly, we have that  

[a~]*(~, y, z, ~)  = ~(¢~y, ;x, z, ~).  

By 3.4.1, the pullback of the holomorphic 1-form o n  X/aT is [up to scalar 

multiples] ~2x - ~y. Whatever  the scalar, this means that  the 1-form ¢2x - ~y 

is invariant under the automorphism aT. That  is, 

¢2x _ ~y =[aT].(~2x _ ~y) 

=U(~¢2y) - ¢ ( ~ )  

=A(¢y - ¢2x). 

This gives A -- - 1 ,  in other words 

[aT]* (x, y, z, w) = (_¢2y, -¢x ,  - z ,  -w) .  



266 B. DAVIES AND A. NEEMAN Isr. J. Math. 

Now we can compute T; we have 

T*(x, y, z, w) =[a~]*~* (x, y, z, w)] 

=[~T]*(-y,  - x ,  - z ,  - ~ )  

=(<x, ¢2y, z, w). 

The identities for Y and ~ are obtained by replacing k by k - l ;  we deduce that  

the action on the holomorphic differentials is given by the formulas 

~*(~, y, z, w) = ( - y , - x , - z , - w ) ,  

~*(x, y, z, ~) =(¢~, ¢~y, z, ~), 
Y*(x, y, z, w) = ( - x ,  - y ,  - w ,  - z ) ,  

~*(x,y,z,~) = ( ~ , ~ , < z , ~ ) .  m 

Remark 3.6: Note that the action of $3 × $3 on the space of H°(X, Kx) of 

holomorphic 1-forms is faithful; no element of $3 × $3 acts trivially. It follows 

that each element g E $3 x $3 is a non-trivial automorphism of X; in particular, 

g has finitely many fixed points. One usually denotes the fixed points of g by X g. 

Let F C X be the union of all the {$3 × S3}-orbits of fixed points: in symbols, 

this says 

F =  U { S 3 x S 3 } X  g. 
gES3xS3 

Then F is a finite set and, outside F,  the group $3 x $3 acts freely. 

Let H be a subgroup of $3 x $3 and let N(H) be the normalizer of H. The 

orbit space X/H is a smooth algebraic curve and N(H)/H acts on X/H. By the 

above, away from a finite set of points in X/H, the action of N(H)/H is free. 

Remark 3. 7". This concludes our section on the action of $3 x $3. We have not 

only shown there is an action; we have computed what it is, on the vector space 

H°(X, Kx) of holomorphic 1-forms. 

4. T h e  i sogeny  

By Lemma 3.1 and Remark 3.2, we know that there are six maps from X to 

elliptic curves. They are all the projections of X to 

Xl~, Xl~-, X l ~  -2, Xl-~, X l~ ,  X l ~  ~. 

In Lemma 3.3 and Remark 3.4 we even computed all the derivatives of these maps. 

The non-zero holomorphic 1-form on the elliptic curve pulls back, respectively, 

to 
x - y ,  ¢ 2 x - ~ y ,  C x - ~ y 2  z - w ,  ~ 2 z - ~ w ,  ~ z - ~ 2 w .  
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Of course, any map from X to an abelian variety factors through the universal 

map, to the Jacobian. Let J -- J ( X )  be the Jacobian of X; it maps to the six 

elliptic curves. And since the map H°(J ,  ~t~) ~ H° (X ,  K x )  is an isomorphism, 

the above computes the differential of the maps from the Jacobian of X to the 

six elliptic curves. If we consider the map 

of: J ) {Xla} × {Xla~} × {x~} × {Xlav},  

then the differential is clearly an isomorphism. It  is enough to check this on 

global 1-forms, and the obvious basis of global 1-forms on { X / a }  x { X / a T }  X 

{X#} x { X / # ~ }  pulls back to 

{ x  - y ,  ¢ 2 x  - Cy,  z - w ,  ¢ 2 z  - C w } ,  

which is a basis for the 1-forms on J .  In other words, the map (I) is an isogeny. 

We next want to study its kernel. 

First, let us remind the reader of a useful trick. I t  is a special case of a much 

more general fact. But we need only the special case. 

LEMMA 4.1: Let s: Y ) Y be an involution of a curve Y.  Suppose p • J ( Y )  

is a point on the Jacobian of Y ,  which lies in the kernel of the natural map 

J ( Y )  ~ ) J ( Y / s ) .  

Then {1 + s}(p) = O. 

Proof: Let i: Y ~ J ( Y )  be the inclusion of the curve Y in its Jacobian. 

Consider the map i + is: Y ---+ J (Y ) .  It  is given by 

P ~-+ i(P)  + is(P),  

for all P • Y. Clearly {i + is}(P)  = {i + i s}(sP) ,  and hence the map i + is 

factors through Y/s .  It can be written 

Y -----+ Y / s  ) J (Y ) .  

But because the Jacobian has the universal property with respect to maps into 

abelian varieties, this can be extended to a commutat ive diagram 

Y ~ Y / s  

l 1 
J ( Y )  ~> J ( Y / s )  , J (Y ) .  
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In other words, we have factored the map 1 + s : J(Y)  ) J (Y)  as a composite 

J(Y)-Z+J(Y/s)  ~-~J(Y). 

If  p E J(Y)  is a point so that  ~r(p) = O, then certainly @r(p) = O, that  is 

{1 + s}(p) = 0. | 

PROPOSITION 4.2: Let X be the curve of Sections 2 and 3. Let a, % ~ and 

be the standard generators of the $3 × $3 acting on X.  Then the kernel of the 

isogeny 

• : J > ( X / a }  x {X /ar}  x {X~} x {X/-#~} 

is annihilated by 3. For every dement p E Ker(~) ,  we have 3p = O. Furthermore, 

for any element p E Ker((I)), the group $3 x $3 acts by a character. Explicitly, 

~ ( p )  = _ p,  

~ ( p )  = p ,  

~ ( p )  = _ p,  

~ ( p )  = p .  

Proof'. Suppose p is an element of Ker(~).  Then p is killed by each of the four 

maps 
J(X)  ) J(X#r),  J (X)  ~ J (X/ar ) ,  
J (X)  > J(X/'~), J (X)  ~ J(X/-~-~). 

By Lemma 4.1, we conclude that  l + a ,  l+ar ,  1 + ~  and 1+~-~ must all annihilate 

p. This gives the identities 
~(p)  = _ p, 

~ r ( p )  = _ p, 

~ (p )  = _ p, 

~ v ( p )  = - p. 

We conclude that  
~(p)  = ~ [ ~ - ( p ) ]  = - [ - p ]  = p, 

and similarly ~(p) = p. We have therefore already shown the identities 

~(p)  = _ p, 

r (p)  = p ,  

~ ( p )  = _ p, 

~(p)  = p .  
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To conclude the proof, we will establish that  if T(p)  = p and ~(p) --- p, then 

3p=O.  

For this computation,  it is convenient to write J ( X )  as C4/A, for some lattice 

A. Of course, the exponential map from the tangent space of X is a homomor- 

phism, and its kernel is a lattice. Thus J ( X )  can be expressed as its tangent 

space modulo a lattice. But J ( X )  is a principally polarized abelian variety, and 

hence is canonically isomorphic to its dual, with an isomorphism respecting the 

$3 x $3 action of the automorphisms of X. In other words, J ( X )  may be written 

as H° (X ,  K x ) / A ,  for some lattice A stable under the $3 x $3 action. 

Suppose now that  a, b, c, d E C are complex numbers, and ax + by + cz + dw E 

H°(X,  K x )  maps to an element p E J ( X ) ,  with 

= p = 

Because p is fixed by T, we have 

p = T(p) = T2(p). 

This gives two identities: 

ax + by + cz + dw =a~x + b~2y + cz + dw (modA), 

ax + by + cz + dw =a~2x + b~y + cz + dw (modA). 

In other words, we conclude 

a(1 - ¢)x + b(1 - ¢2)y EA, 

a(1 - ~2)x + b ( 1 -  ~)y EA. 

Adding these two elements of A, we have 

a(2 - i - ¢~)x + 5(2 - ¢ - ¢2)y E A. 

But l + ~ + ~ 2 = 0 ,  h e n c e 2 - ~ - ~ 2 = 3 .  We deduce 

3ax + 3by E A. 

Repeating the argument, with ~ in place of T, we compute that  

3cz + 3dw E A. 

Adding these two elements of A, we have 

3ax + 3by + 3cz + 3dw E A; 

that  is, 3p = 0. I 
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COROLLARY 4.3: The group $3 × $3 acts on the product of elliptic curves 

{X /a}  x { X / a r }  x {X~} x {X/-a-~} 

in such a way that the isogeny 

~: d ~ {X /a}  x {X /¢r}  x {X#} x { X / ~ }  

is compatible with the $3 x Sa action. 

Proof'. I t  suffices to show that  the kernel of • is stable under the $3 x $3 action 

on J(X) .  But the formulas 
~ ( p )  = _ p,  

~ ( p )  = p ,  

~ ( p )  = _ p,  

~ ( p )  = .  

of Proposition 4.2 tell us that  for every g E $3 x $3 and every p E Ker(~),  

g(p) = +p. 

That  is, g(p) is also an element of Ker(¢) .  I 

5. T h e  $3 x $3 a c t i o n  on  t h e  p r o d u c t  

To proceed further, it will be helpful to explicitly compute the $3 x $3 action on 

the product of elliptic curves 

which in Corollary 4.3 we proved had to exist. 

First observe that  we know the derivative of the map 

{x/~}  x {x/~,-}. 

The codifferential ~*rc~ takes 1-forms on the product of two elliptic curves to 1- 

forms on J ,  and the image of the dual Lie algebra of {X /a}  x {X/aT} is spanned 

by the 1-forms x - y and ¢2x - ~y. That  is, the image is the 2-dimensional vector 

subspace spanned by {x, y}. 
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In Theorem 3.5 we computed, very explicitly, the formulas for the action of 

$3 x $3 on the cotangent space of J ( X ) ,  which is also the cotangent space of 

I t  is easily seen that  the subspace spanned by the 1-forms {x, y} is $3 x $3 

invariant. I t  follows that  $3 x $3 acts on the connected component of the kernels 

of the maps r i and 7riO. In the case of 7ri, the kernel is connected. It  is {X~} x 

{X/-~}. In other words, we learn that  the $3 x $3 action on 

carries the kernel of the map 

to itself; there is a unique action of $3 x $3 on {X/a} x { X / a t } ,  which makes 

7~ i a map of {$3 x S3}-spaces. Similarly, there is a unique action of $3 x $3 on 

{X/-5} x {X/~--~}, which makes the map 

a morphism of {$3 x S3}-spaces. We will actually compute the action on {X/a} x 
{X/aT}. The action on {X/-~} x {X/-ff-~} is given by switching the roles of the 

two S3's, and the action on the product of four elliptic curves is the product of 

these actions. To recapitulate: there is an $3 x $3 action on {X/a} x {X/aT} 
which makes 

J(X) > (Xlo} x (x/aT} 

a morphism of {$3 x S3}-spaces. We want to compute the action. 

Of course, the action on a Lie group is completely determined by the action on 

its Lie algebra, and we know what $3 x $3 does to the Lie algebra of {X/a} x 
{X/aT}. The formulas are 

y) 
y) i y), 
y) =(-x , -y) ,  

=(x,y). 

From these formulas it is immediately clear that  ~ = - 1  and ~ = 1. The more 

subtle problem is to compute a and T. 
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) X / a  be 

One can factorize it as 

which we identify with the natural  map 

X ~ (X /a}  x {X/ar} .  

BT 
X > J ( X  X /a}  x (X /a}  

(°) and we know that  the map BT 2 is a morphism of 5:3 x S3-spaees. We have 

to compute the $3 x $3 action on {X/a}  x {X/a} .  Let us begin with a useful 

lemma. 

LEMMA 5.1: The map ~ + flr + flr 2 : X ) X /  a is constant. Put differently, for 

all P e X ,  fl(P) + fiT(P) + ~T2(p) is independent of P. Rephrasing yet again, 

f l ( P  - Po) + ~ r ( P  - Po) + ~ T 2 ( p  - Po) = O. 

Proo~ We prove this by computing differentials. The holomorphic 1-form 0 on 

X / a  pulls back, via the map fl, to 

fl*O = x -  y. 

First we want to slightly rewrite the map X ~ X/aT. Let/~: X 

the natural  projection. Consider the composite 

X r2)x t~>X/a. 

The map  is clearly 2-1, since r is an automorphism and fl is a double cover. We 

assert t ha t /~ r  2 is nothing other than the canonical projection 

X --+ Xlar. 

The point is very simple. We have 

/~T2[ar(P)] =~aT~(P) since ~2a = aT, 

----~T 2 (P) since ~a  -- ft. 

That  is, f i t  2 is a double cover, which identifies P with aT(P). It  is just the map 

X > X/aT. 
We have the map 

x "  ; { X l a }  × ( x / a }  
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This is true up to scalars; multiplying 0 by a suitable scalar, we can make it 

exactly true. 

But then the pullback of 0 under the map/~ + fir  + / ~ r  2 is computed by 

=(~ - y )  + ( ¢ ~  - C y )  + ( ~ 2 x  - @) 

= 0 .  

I t  follows that  the map/~ + fir  + / ~ r  2 collapses X to a point in X/a .  I 

COROLLARY 5.2: Let B: J(X)  ) J (Xla)  = X l a  be the map  induced by fl, 
on the Jacobians. Then 

B + Br  + BT 2 = O. 

Proof This is just by the functoriality of the Jacobian; another way to say this, 

is that  it is a consequence of the universal property the Jacobian has, for maps 

into abelian varieties. I 

Now we are ready to compute the action of $3 x $3. We will prove: 

THEOREM 5.3: The action of a and r on 

{ x / H  × { X l ~ )  = {x /H  × { x / H  

is given, respectively, by the matrices 

(1 0) (1 
a = - 1  - 1  ' r = 1 0 " 

Since we a/ready know that -5 acts as - 1  and ~ acts as 1, this computes the 
action of  $3 x Sa. 

Proof What  we need to check is that  the maps a and T, defined by the matrices 

above, commute with the projection from J(X).  Let us check this for r first. We 

need to establish the commutat ivi ty  of the diagram 

BT 2 
J(X {Xl.} × {X/H 

"1 1 (  11 -01) 
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is just 

B T  2 cr ---- B T 2 f f  B a T  B T  

The last identity is true because Ba = B, being the canonical map into J(X/a). 
The composite in the other order, that  is 

IB! B T  2 
J(X (X/a} × (X/a} 

1(11 91) 
{x/~} × {x/~} 

is given by the matr ix  product 

(1_ 1 O 1 ) ( B B 2 ) = ( _ B f B v 2 ) - - ( B B  ) .  

Once again, the last identity relies on B + BT ~- B T  2 : O. Anyway, the two 

composites are equal, so the formula for a also checks. | 

6. T h e  m a p s  on  t h e  p o i n t s  o f  o r d e r  3 

We have a map of {$3 × S3}-spaces 

2 
: J(X) ----+ {X/a} 2 x {X/#} 2. 

Let us put 

2 
71" ~ 

\ ~ 2  / 

We know that  the map ~r is an isogeny. More precisely, in Proposition 4.2 we 

computed that  its kernel is contained in the points of order 3 on J(X). This 

means that  multiplication by 3, as a map J(X) > J ( X ) ,  must factor as 

J(X)-~{X/a}  2 x {X/-~}2~g(x).  

The map Ir respects the $3 × S3-aetion, and so does multiplication by 3: J(X) > 
J(X). I t  follows that  the map ¢ also commutes with the action of $3 x $3. 
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It is classical that the composite 

{X l ,~ }  ~ x { X l ~ }  ~ '~ >J(X) ">{x/o-} ~ × { x l -~ }  ~ 

is also multiplication by 3. Let us adopt the notation that,  for any abelian variety 

A, Aa stands for the torsion points of order 3. That  is, 

Aa = {p e A t 3p = 0}.  

We have a sequence of maps 

J(X)3-~{X/a}23 x {X/-6}23-~J(X)3-~+{X/a} 2 x {X/Y}]  

and this sequence is an exact sequence of abelian groups, with an action of $3 x $3. 

LEMMA 6.1: The kernel Of Tr 3 is equal to the kernel of Tr, and the kernel Of ~) 3 is 

equal to the kernel ore.  

Proof: Since ¢7r = 3 and I r ¢ =  3, both the kernel of ~r and of ¢ are contained 

in the kernels of multiplication by 3. In symbols: 

Ker(~r) C J(X)3,  Ker(¢) C {X/~r}~ x {X/-~} 2. 

An element of order 3 gets killed by the map to a Jacobian, precisely when it is 

annihilated by the map to the subgroup of elements of order 3. | 

PROPOSITION 6.2: In the exact sequence 

{X/a} ]  x (XI-5}3--~J(X)a % { x / o - } ]  x {X l -~ } ]  

the kernel o re  a contains all elements of {X/a}2a x {X/Pi2a of the form 

\ 0 1  

Proo£" By the exactness, one has 

Im(¢a) = Ker(Tra) = Ker(u). 

In Proposition 4.2, we saw that  for any p E Ker(rr), the following identities hold: 

~(p)  = _ p, 

r(p) =p, 

-~(p) = _ p,  

~ ( p )  = p .  
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These are identities in 

im(¢3) = {X /a} ]  x {X/F}  ] 
Ker(¢a)  

These identities mean that ,  for any x • {X/a}23 × {X/Y}32, the elements 

{ I  + a}(x) ,  {I  - ~-}(x), { I  + Y } ( x ) ,  { i  - : } (x)  

all must  lie in Ker(¢3).  But  we have computed  all the matrices involved. Our  

computa t ions  of Theorem 5.3 tell us tha t  if x is the vector 

x:( i 
then {1 + a}(x)  is given by 

• { x / . }~  × {x /y}] ,  

[(10o!) (1oo 
0 1 0 - 1  - 1  0 0 
0 0 1 + 0 0 - 1  0 
0 0 0 0 0 0 - 1  

which comes to 

(-i a) 
where the identity - 2 a  = a is because 3a = O. Similarly, one easily computes  

tha t  {1 + Y}(y), with y being the vector (00) 
y =  _ e { x / ~ I ]  × { x / y } ] ,  

0 

conies to 

{ i  + ~}(y) = 

Therefore, for any a 6 {X /a }3  and b C {X/Y}3, the vector 
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must lie in Ker(¢3). | 

COROLLARY 6.3: As above, let ~r be the map 

J(X)  ~ ){X/a)  2 × {X/-5) 2. 

The order of Ker(Tr) divides 3 4. 

Proo~ 

Isr. J. Math. 

By Lemma 6.1, Ker(~r) = Ker(r3). But for r 3 we have the exact sequence 

J (X )3~+{X /a}  2 x {X/~}23-~J(X)3 . 

The exact sequence tells us that Im(lr3) = Ker(¢3), and in Proposition 6.2 we 

produced a subgroup of Ker(¢3) of order 3 4. Thus 3 4 divides 

and since 

I Ker(¢3) t = I ImQr3)l, 

] Ker(Ir3)]" [ Im(~r3)] = ]J(X)31 = 3 s, 

we deduce that  [ Ker(~r3) ] = I KerQr)l is a divisor of 3 4. 

7. T h e  p o l a r i z a t i o n  

So far, we have made very little use of the polarization on J(X) .  Now we are 

about to change this. The abelian variety J(X)  comes with a principal polariza- 

tion. There is on it an ample divisor O, with 

1 4 
deg(O) = NO = 1. 

The Theta  divisor can be thought of as the image of the map 

X 3 ~J(X),  

given by (P, Q, R) ~-+ P + Q + R. Viewed this way, O is naturally a divisor in 

the Jacobian of line bundles of degree 3 on X. Up to non-canonical translation, 

this can be identified with the Jaeobian of degree zero line bundles. For us, the 

Theta  divisor (3 C J(X)  is defined only up to non-canonical translation. Its class 

in the N~ron-Severi group NS(X) is well-defined. Recall that 

Pic(X) 
N S ( X )  - 

Pic°(X) 
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is the quotient of the Picard group Pic(X) by its connected component Pic°(X). 

This makes it clear that  the Theta  divisor is invariant under the automorphisms 

of X [as an element of NS(X)]. Its first Chern class c1(O) G H2(j(X)) is 

invariant under the automorphisms of X. 

Our next aim is to identify cl (O). It lies in 

H 2 (J(X), Q) N H 13 (J(X)) 

and is invariant under the action of S 3 × S 3. It turns out that  this almost 

completely specifies cl (0) .  We will prove 

LEMMA 7.1: The {$3 x S3}-inyariant subspace of 

HI,I(J(X)) = H',I({X/a} 2 × {X/~) 2) 

is a 2-dimensional vector space. 

Proof: For the abelian variety J (X) ,  we have 

H 1'1 (J(X)) = H°(X,  gx)  ® H°(X,  Kx). 

That  is, H 1'1 is the tensor product H °3 @ H °,1. But, as $3 × $3 modules, 

H°(X, Kx) is the dual of H°(X, Kx). Thus 

H 1'1 (J(X)) --H°(X, gx)  ® H°(X, Kx) 

=H°(X, Kx) ® H°(X, Kx)* 

= End { H°(X, Kx) }. 

Now the subspace of {$3 x S3}-invariant elements in End{H°(X, Kx)} is the 

space of maps 

f :  H°(X,  K x )  . > H°(X, Kx) 

commuting with the action of $3 × $3. Now we recall that H°(X, Kx) = V ~ W ,  
with V the vector space spanned by x and y, and W the vector space spanned 

by w and z. This decomposition respects the action of Sa x $3, and V and W 

are non-isomorphic, irreducible representations of $3 x $3. All the statements 

made above are immediate consequences of the explicit fornmlas for the action 

of $3 x $3 on H°(X, Kx). 
If follows that any map 

f : V ( ~ W  ~ V O W  
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respecting the action of $3 x $3 must be of the form al  v + fll W. The vector 

space of all such maps is 2-dimensional. | 

COROLLARY 7.2: 

Severi group 

is at most 2. 

The rank of the {$3 x S3}-l~xed part of the (rational) Ndron- 

NS(J(X))  = NS ( { x / C }  2 x 

Proof: The Ndron-Severi group is the intersection 

H2(J(X),Q) NHI ' I (J (X)) ,  

and since the dimension of the part of H 1'1 fixed by $3 x $3 is only 2, the rank 

of the fixed part of the N6ron-Severi group is bounded above by 2. | 

Next, we make a useful definition. 

Definition 7.3: Let E be an elliptic curve. On E x E,  we wish to consider the 

divisor D(E) C E 2, given by the sum of three linear subvarieties 

D(E) = [ ( x = 0 ) + ( x + y = 0 ) + ( y = 0 ) ] .  

We will prove 

LEMMA 7.4: The rank of the { S  3 X S3}-fixed part  of the Ndron-Severi group 

NS ({X/a}  2 x {X/P} 2) 

is exactly 2. More precisely, this 2-dimensional Q-vector space is spanned by the 
two divisors 

[D(X/¢)] x {X/a} 2, {X/a}  2 x [D(X/-~)]. 

Proof." The two divisors are clearly linearly independent; the only problem is to 

prove that  they belong to the fixed part of the N6ron-Severi group. We need to 

show that 

[D(X/a)] C {X/a}  2, [D(X/p)] C {X/-~} 2 

are fixed by $3 x $3. The two cases being the same, up to replacing k by k -1, 

we will prove that  

[D(X/a)] C {X/a}  2 

is fixed by the group. 
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It suffices to show that D(X/a) is stabilized by the generators a, T, ~ and 
of $3 x $3. For ~ and ~ this is obvious. The involution N acts on E 2 by 

multiplication by -1,  while ~ acts as the identity. Both maps fix all abelian 
subvarieties of E 2. But D is the sum of three abelian subvarieties, each of which 
is fixed. 

It remains to study what happens under the action of a and T. But the matrices 
for a and r were computed, quite explicitly, in Theorem 5.3. Note that a typical 
point on the three divisors making up D(X/a) is given by 

a point on ( x = 0 )  is of the form ( ~ ) ,  

a p o i n t o n  ( x + y = 0 ) i s o f t h e f o r m  ( 2 a )  , 

a point on (y=O) is of the form ( ; ) .  

The matrices for a and T are, respectively, 

(1 O) (11 -1) 
a = -1  -1  ' r = 0 

and one easily computes that a takes 

the point (0a) to the point ( O a )  , 

thepoint  ( a )_a  t o thepo in t  ( ; ) ,  

the point ( ; )  to the point ( _ a a ) .  

Similarly, one computes that r takes 

the point (0a) to the point ( ~ ) ,  

the point ( _ a a ) t o  the point (0a ) ,  

the point ( ; )  to the point ( 7 ) "  

The upshot of the computation is that D(X/a) is fixed, inside {X/a} 2, by all of 
,-.¢3 x o°3. I 

LEMMA 7.5: Let 
~r: J ( X )  > { X l . }  2 x 2 
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be the projection. Let 0 C J (X)  be the Theta-divisor. There exists a rational 
number r so that, up to numerical equivalence, 

= r [ D ( X / a )  x {X/Y} 2 + { X l a }  2 x D(XI#)] .  7r, O 

Brook Because the divisors D ( X / a )  x {X/-~} 2 and { X / a }  2 x D ( X / Y )  are a 

basis for the {$3 x S3}-fixed part of the N6ron-Severi group, and because ~,O 

is certainly fixed by $3 x $3, there exist unique rational numbers r and s so that 

But now consider what happens when one varies the curve. For each k ¢ {0, :t:1}, 

we have a curve 
xy  =ZW, 

x 3 + y3 =k(z  3 + w3). 

As we vary k, we get a family of curves, a family of Theta-divisors, and a family 

of identities 

~ r . O = r ( k ) [ D ( X / a ) ×  {X/Y} 2] + s ( k ) [ { X / a } 2 x  D(X/Y)] .  

But r(k) and s(k) are rational numbers, which vary continuously in the family. 

They are constant on connected components of the parametrizing variety. Since 

C - {0, + l }  is connected, it follows that r(k) -- r is constant, and s(k) = s is 

constant. 

In particular, r(k) = r(k -1) and s(k) = s(k-1).  But replacing k by k -1 

switches the roles of a and ~. That  is, r(k) = s(k-~). This forces r -- s, and we 

deduce 

7r, O : r [ D ( X / a ) ×  { X / - y } 2 + { X / a }  2 × e ( x / Y ) ] .  1 

In the next Lemma, we compute degrees. 

LEMMA 7.6: Let E be an elliptic curve. The degree of the divisor D(E) C E 2 

is3.  

Proo[: We have, by the definition of D(E) ,  

D(E) = [ ( x = 0 ) + ( x + y = 0 > + ( y = 0 ) ] .  

But then we can compute the self-intersection of D(E).  Each elliptic curve on 

the abelian surface E 2 has self-intersection 0, and so the self-intersection of D(E) 
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is given by 

D ( E )  2 = 2 ( x  = 0 ) .  (x + y = 0) + 2(x + y = 0 ) .  (y = 0) + 2(y = 0 ) .  (x = 0) 

d e g ( D ( E ) )  = 1 D ( E ) 2  = 3. 
Z. 

= 2 + 2 + 2  

= 6 .  

This  makes  

COROLLARY 7.7: An immediate consequence is that the degree of the divisor 

D ( X / a )  × { X / # }  2 + { X / a }  2 x D ( X / # )  

i s 3 x 3 = 9 .  1 

THEOREM 7.8: The degree of the isogeny 

lr: J ( X )  > { X / a }  2 x { X / ~ }  2 

is precisely 9. 

Proo~ Let the  degree of 7r be n. The  divisor  O C J ( X )  has degree 1, and  hence 

lr, O c { X / a }  2 × { X / ~ }  2 has degree n. But  in L e m m a  7.5 we saw tha t ,  for some 

ra t iona l  number  r ,  

~r,O = r[D(X/cQ x { X / y }  2 + { X / q }  2 x D(X/-ff)]. 

This  makes  

r 
~ r  4 {Xl } 2 {Xl } 

1 

d e g ( ~ , O )  deg [D(X/a )  x + × D(X/~)]  

= 9 r  4. 

We conclude t ha t  n = 9r  4. Since n is an integer,  so is r .  

But  in Coro l la ry  6.3, we proved t ha t  n divides  34. Thus  for some integer  r ,  

9 r  a d ivides  34. This  can only happen  if r 4 =- 1, t ha t  is n = 9r 4 = 9. Thus,  the  

degree of the  m a p  ~r must  be 9. | 
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8. A c o m p u t a t i o n  on  E x E 

Let E be an elliptic curve. Consider on E x E the three divisors, each of which 

is the sum of abelian subvarieties 

a = ( x  = 0) + (y = 0), 

b = ( ~  = 0) - (y = 0),  

c = ( ~  + y = 0) - ( x  = 0)  - (y  = 0) .  

It is very easy to compute the intersections of these divisors. One shows 

a 2 = 2 
b 2 --- --2 = c 2 

a . b =  b .c  = c . a = O .  

For any pair of integers (m, n) E Z 2, let Zm,n be the abelian subvariety (mx + 

ny = 0). One easily computes the intersection pairings. 

LEMMA 8.1: 
(x = 0) .  Zm,,~ =n  2, 

(y = 0) .  Zm,~ = m  2, 

(x  + y = 0) .  Zm,n = ( m  -- n) 2 

Proof: The divisor (x = 0) is the graph of the map i2: E 

to (0, a) C E 2. 

composite 

> E 2, taking a E E 

The intersection number (x = 0) • Z,,,,n is the degree of the 

E i2 >E2(m,'~)E. 

But the composite is multiplication by n, and its degree is n 2. 

Similarly, the intersection number (y -- 0). Zm,n is the degree of the composite 

E il )E2(,~,,~)E. 

The composite is multiplication by m, and its degree is m 2. 

Finally, the intersection number (x + y = 0)-Z,n,n is the degree of the composite 

The composite is multiplication by m - n, and its degree is (m - n) 2. | 
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LEMMA 8 .2 :  

Proof: This  is 

L e m m a  8.1 and  the  defini t ions of a, b and  c. Recal l  

PROPOSITION 8.3: 

P r o o f  

Thus  

THE THREE-STATE CHIRAL POTTS MODEL 

The  following identities hold for the intersection numbers:  

a "  

b. 

C" 

an immed ia t e  

285 

Zm,n -~m 2 + n 2, 

g i n ,  n ~ - I t  2 - m 2,  

Zm,n ~- - 2mn.  

compu ta t i on ,  s t a r t i ng  wi th  the  ident i t ies  of  

a = ( x  = o)  + (v  = o) ,  

b = ( x  = o)  - (v  = o) ,  

c = ( ~  + v = o) - (x  = o) - (v  = o) .  m 

Up to numerical equivalence, there is an ident i ty  

2Zm,n = (m 2 + n2)a + (m 2 - n2)b + 2mnc.  

P u t  W = (m 2 + n2)a + (m 2 - n2)b + 2mnc.  One easi ly computes  

a . W - - 2 ( m  2 + n  2) = a . 2 Z m , n ,  

b .  W = 2(n 2 - rn 2) = b.  2Zm,n, 

C" W = - 4 m n  = c .  2Zm,n. 

(2Zm,,~ - W ) .  a = (2Z,~,~ - W ) - b  = (2Z,~,~ - W ) - c  = 0. 

Since W is a l inear  combina t ion  of a, b and  c, we conclude 

T h a t  is, 

This  makes  

( 2 z ~ . , .  - w ) .  w = o. 

2Zm,n " W = W  • W 

= [ ( , ,2  + n2)a  + (m 2 - n~)b + 2mnc] ~ 

= 2 ( m  ~ + n2) 2 _ 2(m 2 - n2) 2 _ 2(2ran)  ~ 

=0.  

(2Zm,n - W )  2 =4Z2m,n - 4Zm,,~ - W + W 2 

= 0 + 0 + 0  

----0. 

The ident i t ies  2Zm,n • W -- W • W = 0 are  the  previous  c ompu ta t i on ,  and  the  

iden t i ty  2 ZZ~,n --  0 is because  Zm,n is an abe l i an  subvariety.  
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Up to now, we have computed intersection numbers, with the upshot that 

( 2 Z m , , ~ - W )  2 = a . ( 2 Z m , , ~ - W )  = 0. But a 2 - -  2 > 0, and the Hodgeindex 

theorem tells us that on the subspace of divisors F satisfying a • F = 0, the 

intersection product is negative definite. The divisor (2Z,~,n - W )  lies in the 

subspace, as a .  (2Zm, n - W) = 0. Since (2Zm,n - W) 2 = 0, the Hodge index 

theorem says 2Zm,n - W must vanish, up to numerical equivalence. 1 

PROPOSITION 8.4: Up to numerical equivalence, the divisor D(E)  C E 2 of  

Definition 7.3 satisfies the identity 

Proof." We have 

We also have 

This makes 

in other words 

But 

14D(E) = 3Z3,1 + Z1,5. 

2Z3,1 =(32 + 12)a + ( 3 2 -  12)b+ 2 . 3 .  lc 

: 1 0 a  + 8b + 6c. 

2Z1,5 =(12 + 52)a+  ( 1 2 -  52)b+ 2 . 1 . 5 c  

=26a - 24b + 10c. 

6Z3,1 + 2ZL5 =3(10a + 8b + 6c) + (26a - 24b + 10c) 

--56a + 28c; 

3Z33 + Z1,5 = 14(2a + c). 

+ 0) 

=[(x  + ~ = o) + (~ = o) + (y ; o)] 

= D ( E ) ,  

and we conclude 

3Z33 + Z1,5 = 14D(E). | 

Remark 8.5: There is nothing unique about the above relation. We tried to 

indicate that  there are many relations among the Z,~,~'s. We will return to 

study the non-uniqueness in Section 9. 
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COROLLARY 8.6: Some suitably large integral multiple of the Theta divisor on 

J (X )  can be written as a positive linear combination of exactly four divisors, 

each of which is the kernel of some map J (X )  ---+ E, for some elliptic curve E. 

Proo~ Let us do the computat ion on {X/a}  2 x {X/-5} 2, which is isogenous to 

J(X) .  The Theta  divisor is, up to a scalar, 

D(X/a )  x (X /~}  2 + (X/rT} 2 x D(X/~) .  

But we have just shown that  every D(E) is a positive linear combination of two 

abelian subvarieties. It  follows that  O is a positive linear combination of four. 

We already remarked that  the decomposition is not unique. | 

Remark 8.7. For each integer n > 0, let n*O denote the pullback of O by mul- 

tiplication by n. The above means that,  for some suitably large n, the pullback 

to C 4 of the divisor n*O is the vanishing of a function, which can be written as 

a sum of products of four l-dimensional Theta  functions. In other words, the 

formula obtained by Matveev and Smirnov in Section 5 of [12] is not surprising. 

It  is one of many, expressing the Theta  function of X in a similar-looking form. 

9. T h e  n o n - u n i q u e n e s s  of  the  identi t ies  for divisor classes 

In Section 8, we proved some identities of divisor classes on E 2, which permit ted 

us to establish a formula 

3Z3,1 -{- Z1,5 : 14D(E).  

In Remark 8.5 we noted that  this expression is not unique. We wish to study the 

relations 

aZm,,~ + flZx,y = 7D(E) ,  

where a , /3  and 3, are rational numbers. In Proposition 8.3, we proved identities 

2Zm,n = ( m  2 + n2)a + (m 2 - n~)b + 2mnc, 

2zx,y =(x + y )a + (x - v2)b + 2xyc. 

We also know that  D(E) = 2a + c. If aZm,n + flZ~,y = 7D(E) ,  then the three 

vectors Zm,,~, Zx,y and D(E) must be linearly dependent, in the vector space 

with basis {a, b, c}. This leads us to the following Lemma. 
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LEMMA 9.1: The three vectors 

2Zm,n =(m 2 + n2)a + (m 2 - n2)b + 2mnc, 

2Zx,y =(x 2 + y2)a + (x 2 - y2)b + 2xyc, 

D(E)  =2a + Ob + c 

are linearly dependent, precisely when the 2 x 2 determinant below vanishes; that 

is, precisely when 

x 2 4 x y + y 2  x 2 _ y 2  =0.  

Proof." The  three vectors are linearly dependent,  precisely when the 3 x 3 de- 

te rminant  
m 2 + n  2 m 2 - n  2 2mn] 
x 2 + y2 x 2 _ y2 2xy P 2 0 1 

vanishes. But  now, expanding along the third row, the determinant  becomes 

I m 2 - n 2  2mn I ] m 2 + n 2  m 2 - n 2  I 
=2  x2 _ y2 2xy + x 2 + y2 x 2 y2 

= - 2  2xy x 2 y2 + x 2+y2  x 2 _ y 2  

m 2 -- 4ran + n 2 m 2 -- n 2 [ 
= x 2 -- 4xy + y2 x2 y2 ] • | 

LEMMA 9.2: The two vectors 

2Zm,n =(m 2 + n2)a + (m 2 - n2)b + 2mnc, 

2Zx,y : ( x  2 + y2)a + (x 2 - y2)b + 2xyc 

are linearly dependent, i f  and only if  (m, n) and (x, y) are linearly dependent. 

Proof'. The "if" par t  is obvious. If  the vectors (m, n) and (x, y) are the same 

to  within scalar multiples, then so are Zm,n and Z~,y. We need to  prove the 

converse. 

Suppose therefore tha t  

2Zm,n = ( m  2 + n2)a + (m 2 - n2)b + 2mnc, 

2Zz,y = ( x  2 + y2)a + (x 2 - y2)b + 2xyc 

are linearly dependent.  Then  one of  the vectors is a multiple of the other; inter- 

changing them if necessary, assume Z~,u = A2Z,~,n. From the identities 

x 2 -4- y2 =A2(m2 _{_ n2), 

x 2 _ y2 =A2(m2 _ n 2) 
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we easi ly deduce  t h a t  x 2 = )~2m2 and  y2 = )t2n 2. This  gives 

x = cAm, y = ~lAn 

with  c = +1 ,  ~ /=  +1.  But  we also have an  iden t i ty  

2xy = A2(2mn).  

P u t t i n g  x = c a m  and  y = ~/An, this  becomes  

(cAm)(,IAn) = A2mn, 

which amoun t s  to 

289 

A 2 m n ( c ~ / -  1) = 0. 

Therefore  e i ther  A = 0, or m = 0, or n = 0, or c ~ / =  1. A n d  in every case, the  

vectors  (m, n) and  (x, y) are l inear ly  dependent .  | 

LEMMA 9.3: When the  two vectors 

2Zm,n = ( m  2 + n2)a + (m 2 - n2)b + 2mnc, 

2Zx,u = ( x  2 + y2)a + (x 2 - y2)b + 2xyc 

are  linearly dependent, then D(E) does not lie in t h e / / n e a r  span  o f  Zm,n and  

Zx,y. 

Proof Since the  vectors  are  l inear ly  dependen t ,  for D(E) to lie in the  l inear  

span  it would have to  be a mul t ip le  of one of Zm,n or  Zx,y. W i t h o u t  loss, assume 

D(E) = aZm,,~. This  gives ident i t ies  

2 = ~ ( m  2 + n2), 

0 = ~ ( m  2 - u2) ,  

1 = a ( 2 m n ) .  

The  th i rd  equa t ion  says a # 0, and  the second says m 2 = n 2. The  first equa t ion  

becomes  m 2 = 1/c~, while the  th i rd  says m 2 = + 1 / 2 a .  These  are  incompat ib le ,  

and  there  is no solution.  | 

R e m a r k  9.4: L e m m a  9.3 tells  us t ha t  when 

2Zm,n =(m 2 + n2)a + (m 2 - n2)b + 2mnc, 

2Zz,y =(x 2 + y2)a + (x 2 - y2)b + 2xyc 
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are linearly dependent, then D(E) does not lie in the linear span of Zm,n and 

Zx,y. Thus D(E) will lie in the linear span of Zm,, and Zx,y precisely when the 

vectors 

D(E),  Zm,,~, Zx,v 

are linearly dependent, but the vectors Zm,n and Zx,y are not. By Lemma 9.1, 

the three vectors 

2Zm,n = ( m  2 + n2)a + (m 2 - n2)b + 2mnc, 

2Zx,y =(x  2 + y2)a + (x 2 - y2)b + 2xyc, 

D(E)  =2a + 0b + c 

are linearly dependent precisely when 

I m 2 - 4 m n + n 2  m 2 - n 2 1  
x 2 4xy + y2 x 2 y2 = O. 

By Lemma 9.2, the two vectors 

2Zm,n --(m 2 + n2)a + (m 2 - -  n2)b + 2mnc, 

2Z~,y = (x  2 + y2)a + (x 2 - y2)b + 2xyc 

are linearly dependent precisely when (m, n) and (x, y) are linearly dependent. 

Thus D(E) lies in the linear span of Zm,n and Z~,y precisely when (m, n) and 

(x, y) are linearly independent, and 

m 2 - 4mn + n 2 m 2 - n 2 
x 2 - 4 x y + y 2  x 2 _ y 2  =0.  

Next we wish to fix a vector (m, n) # (0, 0) and study what happens for 

different (x, y). Put  r = m 2 - 4ran + n 2 and s = m 2 - n 2. The vector D(E) 

will lie in the linear span of Zm,~ and Z~,y, precisely if (x, y) is not a multiple of 

(m, n), and 

x 2 r s - 4xy + y2 x 2 _ y2 = O. 

This equation expands to 

- + - + = o .  

It always has a solution y / x  = n /m.  We want to know if the other (necessarily 

rational) solution y / x  is distinct. In any case, the discriminant is a perfect square. 

That  is, we know 
[4s] 2 + 4(r - s)(r + s) = 413s 2 + r 2] 



Vol. 125, 2001 THE THREE-STATE CHIRAL P O T T S  MODEL 291 

to  be a perfect square, since the equation has rat ional  solutions. Subst i tut ing 

again r = m 2 - 4ran + n 2 and s = m 2 - n 2, we compute  tha t  

3S 3 + r 2 ----3[m 2 --  4ran + n2] 2 + [m 2 --  n2] 2 

= 4 [ m  4 --  2m3n + 3 m 2 n  2 _ 2ran 3 + n 4] 

=4[ra 2 - mn + n2] 2. 

And the interesting observation is tha t  the discriminant is non-zero; the two roots  

y / x  are distinct. 

PROPOSITION 9.5: Suppose we are given some vector (m,n)  # (0,0), with 

m, n, C Z. There is, up to scalar multiples, exactly one vector (x, y) E Z 2, so 

that D(E)  lies in the linear span of Zm, n and Zx,y. Up to scalars, there is a 

formula 
x 1 - 2  1)(:) 

Proo~ Except  for the formula for y/x ,  everything has already been established. 

We prove the formula. 

By the above, y / x  satisfies the quadrat ic  equation 

[y/x]2 _ _ _ 4 s  [y/x] + s - r _ 0. 
s + r  s + r  

This equat ion has two roots, one of which is y / x  = n / m ,  and the other  is of 

interest. But  we have 
4s 

[y/x] + In/m] = r + s 

From this we compute  

48 [ y / x ] - - -  In/m] 
r + s  

-4tm2" - n 2 ]  [n/m] 
2m 2 - 4ran 
2m - n 

m -  2n" 

In other  words, up to scalar multiples, x -- m - 2 n  and y = 2 m - n .  The fractional 

linear t ransformat ion taking (m, n) to (x, y) is given by 

(;)=(1 (:) 
In  particular,  there is a plethora of solutions. There is nothing unique or canon- 

ical about  the expression, obtained by Matveev and Smirnov's  [12], which gave 
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the T h e t a  function as a sum of products  of four 1-dimensional T h e t a  functions. 

For any integers (m, n) ¢ (0, 0), there is an (x, y) so t ha t  D(E)  is in the linear 

span  of Zm,,  and Zx,y. 
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